翻訳と辞書
Words near each other
・ Bocking Windmill
・ Bocking's Elm
・ Bockkarkopf
・ Bockleton
・ Bockman
・ Bockmer End
・ Bockrath
・ Bockris
・ Bocksberg (Harz)
・ Bocksbeutel
・ Bockscar
・ Bocksdorf
・ Bockstadt
・ Bockstael metro station
・ Bockstael railway station
Bockstein homomorphism
・ Bockstein spectral sequence
・ Bocksten Man
・ Bocktenhorn
・ Bocktschingel
・ Bockum
・ Bockwurst
・ Boclair Academy
・ BOclassic
・ Boclod
・ BOCM
・ BOCM Pauls
・ Boco
・ Boco River
・ Boco, Les Anglais, Haiti


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Bockstein homomorphism : ウィキペディア英語版
Bockstein homomorphism
In homological algebra, the Bockstein homomorphism, introduced by , is a connecting homomorphism associated with a short exact sequence
:0 → ''P'' → ''Q'' → ''R'' → 0
of abelian groups, when they are introduced as coefficients into a chain complex ''C'', and which appears in the homology groups as a homomorphism reducing degree by one,
:β: ''H''''i''(''C'', ''R'') → ''H''''i'' − 1(''C'', ''P'').
To be more precise, ''C'' should be a complex of free, or at least torsion-free, abelian groups, and the homology is of the complexes formed by tensor product with ''C'' (some flat module condition should enter). The construction of β is by the usual argument (snake lemma).
A similar construction applies to cohomology groups, this time increasing degree by one. Thus we have
:β: ''H''''i''(''C'', ''R'') → ''H''''i'' + 1(''C'', ''P'').
The Bockstein homomorphism β of the coefficient sequence
:0 → Z/''p''Z → Z/''p''2Z → Z/''p''Z → 0
is used as one of the generators of the Steenrod algebra. This Bockstein homomorphism has the two properties
:ββ = 0 if ''p''>2
:β(a∪b) = β(a)∪b + (-1)dim a a∪β(b)
in other words it is a superderivation acting on the cohomology mod ''p'' of a space.
==References==

*
*
*
* .
*

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Bockstein homomorphism」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.